
CAPCELL PAK C₈ DD (Double Durability)

Alkyl groups attached to silica-based packing material are cleaved when used in an acidic mobile phase for a long period of time. When used in a basic mobile phase, the silica support dissolves thus destroying the column. Durability of reversed phases has a tendency to decrease as the length of the alkyl group decreases. CAPCELL PAK C_8 DD (Double Durability) is a column with unparalleled acidic and basic resistance. The high surface polarity and smaller hydrophobicity, compared to C_{18} columns, make this product the best choice for short-time analysis of mixtures with diverse hydrophobicities.

A D D A

Excellent durability (pH range: 1.5 – 10)

Excellent Acidic resistance

Acidic resistance depends on the concentration of the organic content in a mobile phase. It is known that the higher the concentration of the organic content is, the more difficult it is to cleave the Si-C bond. The test method here uses a mobile phase of pH 1 with no organic solvent, thus representing an extremely harsh acidic condition.

Excellent Basic resistance

Silica is not hydrolysed under acidic conditions, but unstable under neutral to basic conditions. The test method uses a mobile phase of pH 10 which represents an extremely harsh basic condition.

*Acidic resistance test conditions

Mobile phase : (A) 2 vol% TFA, H₂O, pH1

(B) 2 vol% TFA, CH₃CN B 65% (20min)>0% (60min) >98% (5min)>65% (5min)

Flow rate : 1.0 mL/min

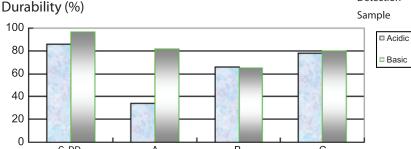
Temperature : 60 °C

Detection : UV 254 nm

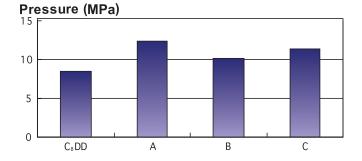
Sample : Uracil, amylbenzene

*Basic resistance test conditions

Column : 4.6mm i.d. x150mm


Mobile phase : 4 mmol/L Na₂B₄O₇/CH₃CN=90/10, pH 10.0

Flow rate : 1.0 mL/min


Temperature : 50 °C

Detection : UV 254 nm

Sample : Uracil, amylbenzene

Low back pressure

Conditions

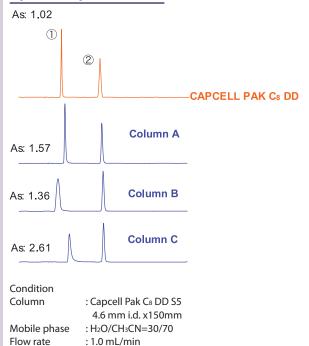
 $\begin{tabular}{lll} Column & : 4.6mm i.d. x150mm \\ Mobile phase & : H_2O/CH_3CN=50/50 \\ Flow rate & : 1.0 mL/min \\ \end{tabular}$

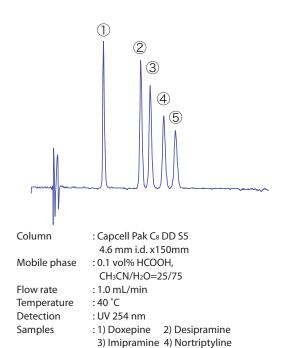
Temperature : 40°C

Temperature

Samples

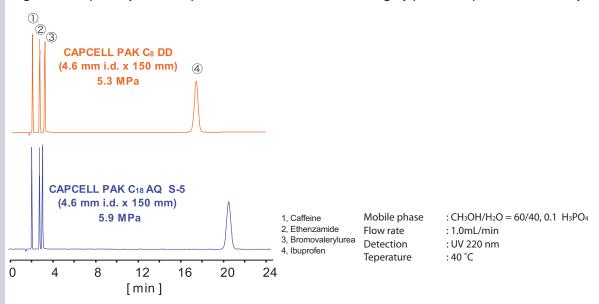
:40 °C


: 1) Pyridine 2) Phenol


Excellent peak shape of basic compounds

The polymer coating technology used for CAPCELL PAK C₈ DD resulted in showing excellent peak shapes for basic compounds. The figure down on the left is the comparison with other columns in "pyridine/phenol test", an evaluation method commonly used for silanol effects. A good separation was also obtained for five tricyclic antidepressants, highly basic compounds (down, left).

Pyridine/phenol test


Analysis of tricyclic antidepressants

5) Amitriptyline

Suitable for quickly separating mixtures with diverse hydrophobicity

This is a comparison between CAPCELL PAK C_{18} AQ, and CAPCELL PAK C_{8} DD column. Due to large hydrophobicity corresponding to the long functional group, CAPCELL PAK C_{18} AQ requires more time to elute ibuprofen that has a relatively high hydrophobicity. On the other hand, C_{8} DD column, with its low hydrophobicity, is capable of separating the sample in a much shorter time. In addition, because of the high surface polarity that is equivalent to that of the C_{18} AQ, highly polar samples are effectively retained.

