

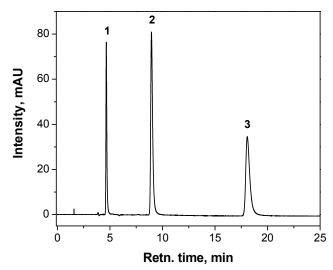
Sepax Technologies, Inc.

Delaware Technology Park 5 Innovation Way, Newark, DE 19711, USA Phone: (302) 366-1101; Fax: (302) 366-1151 Toll Free: 1-877-SEPAX-US; www.sepax-tech.com

HP-SAX (II) Column Manual

Column Information

Sepax HP-SAX (II) is a strong anion exchanger with quaternary ammonium functional groups chemically bonded to the silica. Utilizing highest purity and enhanced mechanical stability silica and pure bonding reagents, HP-SAX (II) phase is synthesized with a mixed chemical structure of quaternary ammonium functional group and phenyl group. HP-SAX (II) bonded phase has been innovatively and specially designed to ensure maximum surface coverage, which leads to carbon content as high as 16.0%. The maximum surface coverage allows HP-SAX (II) to have exceptional stability. The uniform, spherical HP-SAX (II) particles have a nominal surface area of 300 m²/g with a controlled pore size of 120Å. The chemistry of the phase synthesis is completely controlled that results in very reliable column-to-column reproducibility. HP-SAX (II) columns are packed with a proprietary slurry technique to achieve uniform and stable packing bed density for maximum column efficiency. With a mixed mode of strong anion-exchange and hydrophobicity, HP-SAX (II) phase offers high selectivity and high resolution separation for a variety of organic acids such as aromatic and aliphatic carboxylic acids and sulfonic acids. Specific application areas include pesticides, herbicides, pharmaceuticals, inorganic anions, and biological species such as nucleotides and carbohydrates. HP-SAX (II) columns can be compatible with a variety of mobile phases including organic solvents, mixture of water and organic solvent, such as methanol or acetonitrile, and aqueous buffers, such as phosphate.


Column Stability and Performance

Sepax *HP-SAX (II)* uses full coverage bonded silica packing, which allows exceptional high stability. The *HP-SAX (II)* packing material is stable in the mobile phases with pH range 2-8.5. Each lot of packing has passed rigorous performance requirements, including stability, carbon loading, capacity and selectivity. Each column is tested to control the quality by meeting its specifications. A typical test chromatogram for quality control is shown here for a *HP-SAX (II)* 4.6x250mm column.

Safety Precaution

Sepax HP-SAX (II) columns are normally operated under high pressure. Loose connections will cause leaking of organic solvents and injected samples, all of which should be considered as the

hazards. In the case of leaking, proper gloves should be worn for handling the leaked columns. When open the columns, proper protections should be used to avoid inhalation of the small silica particles and solvent vapor.

Column: HP-SAX (II) (5 μ m, 4.6×250 mm); Mobile Phase: 50 mM phosphate buffer and 150 mM sodium chloride, pH 3.2; Flow rate: 0.75 mL/min; Detection: UV 254 nm; Temperature: ambient; Injection volume: 1 μ L; Samples: (1) Cytidine-5'-monophosphate disodium salt (CMP), (2) Adenosine 5'-monophosphate disodium salt (AMP), (3) Guanosine-5'-monophosphate disodium salt hydrate (GMP).

Column Installation and Operation

When column is shipped or not in use, it is always capped at both ends. When install the column to the system, first remove the end caps. Make the flow direction as marked on the column. Unless user has a special purpose to reverse the flow direction, for example, removal of the inlet pluggage, follow the flow direction as labeled. Column connections are an integral part of the chromatographic process. If ferrules are over tightened, not set properly, or are not specific for the fitting, leakage can occur. Set the ferrules for column installation to the HPLC system as follows:

- (a) Place the male nut and ferrule, in order, onto a 1/16" o.d. piece of tubing. Be certain that the wider end of the ferrule is against the nut.
- (b) Press tubing firmly into the column end fitting. Slide the nut and ferrule forward, engage the threads, and fingertighten the nut.
- (c) While continuing to press the tube firmly into the endfitting, use a 1/4" wrench to tighten the nut 90 degrees past fingertightness.
- (d) Repeat this coupling procedure for the other end of the column.

New HP-SAX (II) columns are shipped in a mixture of methanol or acetonitrile and water. During stocking and shipping, the silica packing could be dried out. It is recommended that 10-20 column volumes of pure organic solvents, such as methanol, acetonitrile be purged to activate the column. Flush the column with your mobile phase with gradual increasing the flow rate from 0.1 mL/min to your operation condition, until the baseline is stable. If the column backpressure and baseline fluctuate, this might be due to the air bubbles trapped inside the column. Flush the column with higher flow rate for 2-5 minutes, for example 2 mL/min for a 4.6x150 mm column.

Samples and Mobile Phases

To avoid clogging the column, all samples and solvents including buffers should be filtered through 0.45 μ m or 0.2 μ m filters before use. *HP-SAX (II)* bonded stationary phase has wide compatibility with wide range of organic solvents, a mixture of organic solvent (e.g. methanol or acetonitrile) and water, and aqueous buffer, such as phosphate or borate. HP-SAX columns are compatible with nonionic and zwitterionic detergents. *HP-SAX (II) columns are incompatible with anionic detergents.* Always degas the mobile phase. A simple way for degassing is to sonicate it for 5 minutes under aspirator vacuum.

Column Care

pH Avoid use of *HP-SAX* (*II*) below pH 2 or above 8.5. Higher pH will dissolve silica, creating defects of bonded phase that causes separation efficiency loss and retention time change. The optimum performance and operation for longest lifetime are at pH 2 - 7.5.

Pressure Even though HP-SAX (II) can operate at pressure up to 5,000 psi, the normal operation is usually under 3,000 psi. Continuous use at high pressure may eventually damage the column as well as the pump. Since the pressure is generated by the flow rate. The maximum flow rate is limited by the backpressure. It is expected that the backpressure might gradually increase with its service. A sudden increase in backpressure suggests that the column inlet frit might be plugged. In this case it is recommended that the column be flushed with reverse flow in an appropriate solvent.

Temperature The maximum operating temperature is 60°C. Continuous use of the column at higher temperature (>75°C) can damage the column, especially under high pH (>8.5).

Storage When not in use for extended time, do not allow water or aqueous buffer to remain in the column. Remove any aqueous buffers by washing with at least 20-30 column volumes of 50% methanol or acetonitrile aqueous solution, followed by 20-30 column volumes of the pure solvent such as acetonitrile. Each column is shipped with two removable end plugs. To prevent the drying of the column bed, seal both ends of the column with the end plugs provided.

Sepax HP-SAX (II) Products

ID x Length	Particle size	Pore size	P/N
4.6x250mm	5 μm	120 Å	122675-4625
4.6x150mm	5 μm	120 Å	122675-4615